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SUMMARY 

A mathematical model for bacterial growth, survival and death has been developed. This equation has been applied to a large set of data obtained with 
Yersinia enterocolitica to produce a predictive model. Favorable comparisons were obtained between predictions from the model, primarily as estimates of the 
population size as affected by local conditions, and data from an experiment with an inoculated food. 

INTRODUCTION 

Populations of organisms vary as a consequence of birth 
and death [1-3,5,7-10]. Taking the human population as an 
example, if the birth rate of the population exceeds the 
death rate, the population will increase, and conversely, if 
the death rate exceeds the birth rate, the population size 
will decrease. This is true regardless of the nature of the 
population [28] (e.g. human, plant, microorganism). 

The human population can be considered still further, in 
terms of the average per capita (per head of population) 
death rate of a human with respect to the age of the 
individual. It is well established that the first few hours of 
a child's life are critical--as with most biological populations, 
the 'new born' organism has to adjust to its new environment 
and during this period of adjustment, an increased number 
of the organisms will die. Then, assuming that the conditions 
are favorable for development, and as the organism adjusts 
to its surroundings, its development will continue. During 
this period, although the organism can die at any time, the 
per capita death rate may fall. However, as the organism 
reaches maturity the death rate can be seen to increase with 
the onset of old age. Thus, the general shape of the death 
rate curve described above follows that illustrated in Fig. 1. 

The other factor controlling the size of the population is 
the birth rate [1-3,5,7-10]. Before an organism can multiply 
or give birth, it has to go through a period of maturation 
[2,3,5,8,9]. With some organisms this may involve a transition 
through a number of distinct stages, whereas with others 
the development process may be more continuous with the 
stages less well defined. However, all manifest a time period 
when the birth rate is zero. As the organism develops, its 
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Fig. 1. Graphical representation of the suggested per capita death 
rate of the human population. 

reproductive capabilities increase. Assuming that prolifer- 
ation is proportional to the capacity to reproduce, the birth 
rate rises gradually from zero to a maximum, at which the 
organism reaches peak fertility, before falling again. In some 
organisms (e.g. humans), the birth rate will return to zero 
when reproduction is no longer possible. With others this 
birth rate is merely seen to decline slightly as old age sets 
in but does not return to zero before the organism dies. 
The shape of the birth rate curve described above is shown 
in Fig. 2. 

These are general descriptions of the changes of biological 
populations. However, the theory could be applied more 
specifically and this paper is concerned with the specifics of 
populations of the bacterium Yersinia enterocolitica. When 
a microorganism is placed into a new environment, such as 
a food commodity or a culture medium, it undergoes a 
period of adjustment. The length of this period is partially 
dependent on the environment--if  conditions are optimal, 
then the adaptation period may be brief, whereas in less 
favorable conditions the organism may take much longer to 
adapt. During this period a decrease may be observed in 
the size of the population. This could correspond to the 
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Fig. 2. Graphical representation of the suggested per capita birth 
rate of the human population. 
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Fig. 3. Function selected to represent the per capita 'growth' or 

'division' rate of a microorganism. 

initial increased 'death rate' .  This may then be followed by 
a period of rapid growth in the population size. This could 
be the period where the 'death rate '  is low. Then, as perhaps 
nutrients become a limiting factor, a decrease in the 
population size may be observed, which could correspond 
to the increase in the 'death rate '  discussed above. 

Similarly, the 'birth rate '  or 'division rate '  of the organism 
may follow the general scenario outlined above. Initially 
there may be a period when the population size is constant 
(i.e. the 'lag phase'). This could be the period where the 
organism is acclimatizing to its new surroundings and does 
not multiply. This may be followed by a period of rapid 
increase in the population size followed by a more gradual 
rise up to a maximum population size. This could correspond 
with a gradual increase in the 'birth rate '  up to a maximum 
before falling again, as previously described and illustrated 
in Fig. 2. 

D e v e l o p m e n t  o f  the equa t ion  

It is possible to consider the above assumptions in 
mathematical terms. The size of a biological population is 
controlled by both birth and death. So, it follows that the 
rate at which the population size changes, is dependent on 
both the 'birth' and 'death '  rates. In mathematical terms, 
this can be represented by the following equation: 

dN dG dM 
dt - U ' ~ - - U '  d-~- (1) 

where N is the population size, t represents time, d G / d t  is 
the per capita 'birth'  or 'growth rate '  and d M / d t  is the per 
capita 'death'  or 'mortality rate'. 

Subsequently, due to the general shape they describe, 
the following two mathematical equations were then selected 
to represent the 'growth' and 'death rate'  functions respect- 
ively: 

A '  . t 3 . e -t/B 
Growth rate - ~ B4 (2) 

ln(2) �9 (e(t-D)/C+ e -( t -D)lc)  
Death rate = C (3) 

where A ' ,  B, C and D are constants and t represents time. 
These functions are represented graphically in Figs 3 and 4. 

These equations were then substituted into Eqn 1 and 
this differential equation was then integrated to give the 
following equation for population size: 

N = N o . 2  (c(0-M(0) t>~0 (4) 

where: 

G(t) = A - (1 - (1 + ( t /B) + (t/B)2/2 

+ (t/B)3/6) . e -t/B) 

M( t )  = e ( ' - ~  e - ( ' - ~  e - D / c +  e ~  

(5) 

(6) 

and A ( A  = A'/ln(2)),  B, C and D are constants, t represents 
time and No, the count at time 0, and N are actual counts 
no t  log counts. 

A p p l i c a t i o n  o f  the equa t ion  

Data from a large, full factorial experiment investigating 
the effects of temperature, salt and pH on the population 
size of Y. enterocol i t ica  were used. Data were recorded as 
a series of viable (plate) counts against time. A cocktail of 
strains of the organism were applied to a sterile growth 
medium (Trypticase Soy Broth) in which the salt and pH 
had been adjusted appropriately, and the medium then 
incubated at given constant temperatures. The eight tempera- 
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Fig. 4. Function selected to represent the per capita 'death' rate of 

a microorganism. 
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tures used in the design were 0, 2, 4, 7, 10, 15, 20, and 
30 ~ The nine sodium chloride concentrations ranged from 
0 to 8% at 1% intervals. The six pH levels used were in 
the range 4.5-7.0 at intervals of 0.5. The experiment 
therefore involved a total of 432 different combinations of 
factors with 4140 actual data points. 

As a guide to the type of data to be fitted with the new 
equation, the individual curves were classified by types: 
growth was defined as at least a 10-fold increase in the 
number of colonies; death was defined as more than a 10- 
fold decrease in the number of colonies; and survival was 
defined as the remaining curves. From the results it was 
apparent that 42% of the curves could be classified as 
growth curves, 33% as survival curves and 25% as death 
curves. 

The fitting was carried out using a quasi-Newton algorithm 
for finding the minimum of a function. The function 
minimized was: 

X [Log(N) - Log(No) - Log(2) �9 {G(t) - M(t)}] 2 (7) 

where G(t) and M(t) are defined in Eqns 5 and 6 respectively, 
t represents time, No is the (unlogged) count at time 0 and 
N the (unlogged) count at time t. 

Initially, data from each curve were fitted to the new 
equation on an individual basis. It was immediately apparent 
that the Yersinia data did not exhibit an initial decrease in 
the death rate (i.e. D = 0). Reviewing the data, this seemed 
to be reasonable as none of the growth curves showed a 
marked initial decrease. Consequently, parameter D was 
removed from the equation. 

From plotting the values of each of the parameters against 
the respective factor levels (i.e. pH, temperature and salt), 
the resulting surface suggested the use of the following type 
of polynomial to represent each of the three parameters: 

In(A) = Ao + A1T + A2S + A3P + A4TS + AsTP 

+ A6SP + A7 T2 + As $2 + A9P a (8) 

where T represents temperature, S represents salt, P 
represents pH and A0-A9 are constants. 

Consequently, polynomials were substituted for each of 
the parameters A, B and C in Eqn 7, and the data were 
then used to find the minimum of this function (i.e. of the 
complete surface). 

In order to compare the results with an existing modeling 
technique, a Gompertz-polynomial [4,6] was fitted to the 
subset of data originally classified as growth (i.e. the 42% 
described above). Polynomials were substituted for the 
parameters B, C and M in the Gompertz equation and a 
quasi-Newton algorithm was used to minimize the sums of 
squares of the surface. 

The new equation when fitted to all the data accounted 
for 96.4% of the variation and a mean squared error of 
0.494. The Gompertz equation when fitted to just the growth 
data accounted for 89.4% of the variation giving a mean 
squared error of 0.849. In other words, the fit of the new 

equation to all the data was better than the fit of the 
Gompertz equation to only the growth data for which it has 
been conventionally used. 

As an assessment of individual fits, the mean squared 
errors were calculated for each growth curve as fitted by 
both the new equation and the Gompertz equation. Fig. 5 
shows the mean squared error for an individual growth 
curve fitted using the Gompertz-polynomial against that for 
the same growth curve fitted using the new equation. The 
line through the middle is the equivalence l ine-- i t  is formed 
when the fit of the data using either equation is equally 
good. If points are in the area above this equivalence line 
then the Gompertz equation has produced the better fit, 
and, conversely if points lie in the area below the line the 
new equation has produced a better fit. Each point represents 
a different level of temperature, pH and salt. In terms of 
percentages, 63% of the points lie in the area below the 
line, the area where the new equation fits better than the 
Gompertz. The graph indicates that the Gompertz curve fits 
poorly on a number of occasions. A review of the Gompertz 
model showed that these points were associated with low 
growth rates at the boundaries of growth and survival, areas 
where the data were not characteristic of a Gompertz 
equation. The exercise of plotting the mean square errors 
from the two types of equations was therefore repeated, but 
on this occasion the points representing a growth rate of 
<0.02 (logl0/h) were omitted. Again, the results are 
represented graphically (Fig. 6). However, on this occasion 
many of the poorly fitting Gompertz type predictions were 
omitted resulting in an increase to 50% in the number of 
points above the line (cf. 37% as described above). 

The results were encouraging in that the new equation 
performed as well as the Gompertz,  despite the fact that 
the Gompertz equation was used with only those data most 
appropriate for it (the 42% of the data classified as growth), 
whereas the new curve used all of the data. In order to 
highlight the capabilities of the new equation, Fig. 7 shows 
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model from the new equation, a completely unrelated set 
of data was selected. These data were derived from a study 

of the growth of Y. enterocolitica in milk (UHT and 
pasteurized). To compare this growth data with the model, 
data points from the milk experiment were plotted against 
the growth as predicted by the model. Fig. 8 shows data at 
four different factor levels against the growth as predicted 
by the model. Clearly the graphs illustrate very good 
agreement between the growth as predicted by the model 
and that observed in the experimental study. 

Currently, further comparative work, with both inoculated 
food studies and data from literature, on the growth, survival 
and death of Y. enterocolitica is under way in order to 
validate the model thoroughly. However, on the basis of 
evidence to date the model appears to have considerable 
potential for predicting changes in microbial population sizes 
(growth, survival and death) under given conditions. 
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the data points recorded in the experiment (crosses) and 
the growth as calculated by the model (line). 

An important part of the development of useful models is 
validation in foods. Consequently, for comparative purposes, 
and in order to assess the predictive capabilities of the 

DISCUSSION 

An equation has been developed to facilitate prediction 
of the growth, survival and death of bacterial species. 
The actual equation is more complicated than equations 
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conventionally used for such purposes, such as the Gompertz- 
polynomial. However, in contrast to equations currently in 
use it does have the capacity to handle growth, survival and 
death data, so that this one predictive equation can encompass 
all three aspects of population dynamics. 

The theory behind the equation has been kept simple 
and consequently the model has a certain amount of 
flexibility. Further model development is already under way, 
considering, for example, different functions for the death 
rate of the microbial population, to improve yet further the 
model's performance. 

Future work will see the merging of the data generated 
at Campden with that from the Institute of Food Research 
in Reading, UK, the Institute of Food Research in Norwich, 
UK and the University of Surrey, UK, in order to expand 
the scope of the model to a wider range of environmental 

conditions. 
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Glossary. In is used to denote natural logs. Log is used to 
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